Question:

Let a1 = b1 = 1, an = an – 1 + 2 and bn = aa + bn – 1 for every natural number ≥ 2. Then\(\sum_{n=1}^{15}\) \(a_n⋅b_n\) is equal to ______.

Updated On: Mar 20, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 27560

Solution and Explanation

a1 = b1 = 1
an = an – 1 + 2 (for n≥ 2) ; bn = an + bn – 1
a2 = a1 + 2 = 1 + 2 = 3 ; b2 = a2 + b1 = 3 + 1 = 4
a3 = a2 + 2 = 3 + 2 = 5 ; b3 = a3 + b2 = 5 + 4 = 9 
a4 = a3 + 2 = 5 + 2 = 7 ; b4 = a4 + b3 = 7 + 9 = 16
a15 = a14 + 2 = 29 
b15 = 225

\(\sum_{n=1}^{15}\) \(a_nb_n\)=1×1+3×4+5×9+⋯29×225

∴ \(\sum_{n=1}^{11}\)  \(a_nb_n\)=\(\sum_{n=1}^{15}\)(2n−1)n2=\(\sum_{n=1}^{15}\) 2n3\(\sum_{n=1}^{15}\) n2

=2[\(\frac{15×16}{2}\)]2−[\(\frac{15×16×31}{6}\)]=27560

Was this answer helpful?
0
0

Concepts Used:

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus is the theorem which states that differentiation and integration are opposite processes (or operations) of one another.

Calculus's fundamental theorem connects the notions of differentiating and integrating functions. The first portion of the theorem - the first fundamental theorem of calculus – asserts that by integrating f with a variable bound of integration, one of the antiderivatives (also known as an indefinite integral) of a function f, say F, can be derived. This implies the occurrence of antiderivatives for continuous functions.