Let \(S ={ (\begin{matrix} -1 & 0 \\ a & b \end{matrix}), a,b, ∈(1,2,3,.....100)}\) and
let \(T_n = {A ∈ S : A^{n(n + 1)} = I}. \)
Then the number of elements in \(\bigcap_{n=1}^{100}\) \(T_n \) is
The portion of the line \( 4x + 5y = 20 \) in the first quadrant is trisected by the lines \( L_1 \) and \( L_2 \) passing through the origin. The tangent of an angle between the lines \( L_1 \) and \( L_2 \) is:
A relation in mathematics defines the relationship between two different sets of information. If two sets are considered, the relation between them will be established if there is a connection between the elements of two or more non-empty sets. Therefore, we can say, ‘A set of ordered pairs is defined as a relation.’
Read Also: Relation and Function
There are 8 main types of relations which are:
There are two ways by which a relation can be represented-
The roster form and set-builder for for a set integers lying between -2 and 3 will be-
I= {-1,0,1,2}
I= {x:x∈I,-2<x<3}