Let \(S ={ (\begin{matrix} -1 & 0 \\ a & b \end{matrix}), a,b, ∈(1,2,3,.....100)}\) and
let \(T_n = {A ∈ S : A^{n(n + 1)} = I}. \)
Then the number of elements in \(\bigcap_{n=1}^{100}\) \(T_n \) is
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
A relation in mathematics defines the relationship between two different sets of information. If two sets are considered, the relation between them will be established if there is a connection between the elements of two or more non-empty sets. Therefore, we can say, ‘A set of ordered pairs is defined as a relation.’
Read Also: Relation and Function
There are 8 main types of relations which are:
There are two ways by which a relation can be represented-
The roster form and set-builder for for a set integers lying between -2 and 3 will be-
I= {-1,0,1,2}
I= {x:x∈I,-2<x<3}