Question:

The range of f(x) = \(4\sin^{-1}(\frac{x^2}{x^2+1})\) is 

Updated On: Mar 21, 2025
  • \([0,\pi]\)

  • \([0,\pi)\)

  • \([0,2\pi]\)

  • \([0,2\pi)\)

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Step 1: Write the given function. \[ f(x) = 4 \sin^{-1} \left( \frac{x^2}{x^2 + 1} \right) \] 
Step 2: Analyze the expression inside the inverse sine function. \[ 0 \leq \frac{x^2}{x^2 + 1} < 1 \] This means that the expression inside \( \sin^{-1} \) is valid as the sine function only takes values between 0 and 1. 
Step 3: Apply the inverse sine function. \[ 0 \leq \sin^{-1} \left( \frac{x^2}{x^2 + 1} \right) < \frac{\pi}{2} \] 
Step 4: Multiply by 4. \[ 0 \leq 4 \sin^{-1} \left( \frac{x^2}{x^2 + 1} \right) < 2\pi \] 
Step 5: Conclude the range. Thus, the range of \( f(x) \) is \( [0, 2\pi] \).

Was this answer helpful?
0
4