\([0,\pi]\)
\([0,\pi)\)
\([0,2\pi]\)
\([0,2\pi)\)
Step 1: Write the given function. \[ f(x) = 4 \sin^{-1} \left( \frac{x^2}{x^2 + 1} \right) \]
Step 2: Analyze the expression inside the inverse sine function. \[ 0 \leq \frac{x^2}{x^2 + 1} < 1 \] This means that the expression inside \( \sin^{-1} \) is valid as the sine function only takes values between 0 and 1.
Step 3: Apply the inverse sine function. \[ 0 \leq \sin^{-1} \left( \frac{x^2}{x^2 + 1} \right) < \frac{\pi}{2} \]
Step 4: Multiply by 4. \[ 0 \leq 4 \sin^{-1} \left( \frac{x^2}{x^2 + 1} \right) < 2\pi \]
Step 5: Conclude the range. Thus, the range of \( f(x) \) is \( [0, 2\pi] \).