Let the area enclosed by the lines \( x + y = 2 \), \( y = 0 \), \( x = 0 \), and the curve \( f(x) = \min \left\{ x^2 + \frac{3}{4}, 1 + [x] \right\} \), where \( [x] \) denotes the greatest integer less than or equal to \( x \), be \( A \). Then the value of \( 12A \) is ____________.
When working with piecewise functions, carefully analyze the behavior of each piece and compute the area step by step for the defined intervals.
\[ A = \int_0^{1/2} \left( 2 - x - \left( x^2 + \frac{3}{4} \right) \right) dx + \int_{1/2}^1 \left( 2 - x - 1 \right) dx + \int_1^2 \left( 2 - x - 2 \right) dx. \]
\[ \int_0^{1/2} \left( 2 - x - x^2 - \frac{3}{4} \right) dx = \int_0^{1/2} \left( \frac{5}{4} - x - x^2 \right) dx. \]
Solution:
\[ = \left[ \frac{5}{4}x - \frac{x^2}{2} - \frac{x^3}{3} \right]_0^{1/2} = \frac{5}{8} - \frac{1}{8} - \frac{1}{24} = \frac{5}{12}. \]
\[ \int_{1/2}^1 \left( 2 - x - 1 \right) dx = \int_{1/2}^1 \left( 1 - x \right) dx = \left[ x - \frac{x^2}{2} \right]_{1/2}^1. \]
Solution:
\[ = \left( 1 - \frac{1}{2} \right) - \left( \frac{1}{2} - \frac{1}{8} \right) = \frac{1}{2} - \frac{3}{8} = \frac{1}{8}. \]
\[ \int_1^2 \left( 2 - x - 2 \right) dx = \int_1^2 \left( -x \right) dx = \left[ -\frac{x^2}{2} \right]_1^2 = -\frac{4}{2} + \frac{1}{2} = -\frac{3}{2}. \]
\[ A = \frac{5}{12} + \frac{1}{8} - \frac{3}{2} = \frac{17}{12}. \]
\[ 12A = 12 \cdot \frac{17}{12} = 17. \]
The eccentricity of the curve represented by $ x = 3 (\cos t + \sin t) $, $ y = 4 (\cos t - \sin t) $ is: