If the sum of the first 10 terms of the series \[ \frac{4 \cdot 1}{1 + 4 \cdot 1^4} + \frac{4 \cdot 2}{1 + 4 \cdot 2^4} + \frac{4 \cdot 3}{1 + 4 \cdot 3^4} + \ldots \] is \(\frac{m}{n}\), where \(\gcd(m, n) = 1\), then \(m + n\) is equal to _____.
If \(\sum\)\(_{r=1}^n T_r\) = \(\frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}\) , then \( \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} \) is equal to :
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 