Shortest distance between lines \(\frac{(x-5)}{4}\)=\(\frac{(y-3)}{6}\)=\(\frac{(z-2)}{4}\) and \(\frac{(x-3)}{7}=\frac{(y-2)}{5}=\frac{(z-9)}{6}\) is ?
The value of the integral \(\int \limits_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x+\frac{\pi}{4}}{2-\cos 2 x} d x\)is :
Consider the lines $L_1$ and $L_2$ given by
$L_1: \frac{x-1}{2}=\frac{y-3}{1}=\frac{z-2}{2} $
$ L_2: \frac{x-2}{1}=\frac{y-2}{2}=\frac{z-3}{3}$
A line $L_3$ having direction ratios $1,-1,-2$, intersects $L_1$ and $L_2$ at the points $P$ and $Q$ respectively Then the length of line segment $P Q$ is
The absolute difference of the coefficients of \(x^{10}\) and \(x^7\) in the expansion of \(\left(2x^2 + \frac{1}{2x}\right)^{11}\) is equal to:
The number of points on the curve \(y=54 x^5-135 x^4-70 x^3+180 x^2+210 x\) at which the normal lines are parallel \(to x+90 y+2=0\) is
Let $f: R -\{2,6\} \rightarrow R$ be real valued function defined as $f(x)=\frac{x^2+2 x+1}{x^2-8 x+12}$ Then range of $f$ is
If (21)18 + 20·(21)17 + (20)2 · (21)16 + ……….. (20)18 = k (2119 – 2019) then k =
The sum of the absolute maximum and minimum values of the function \(f(x)=\left|x^2-5 x+6\right|-3 x+2\)in the interval \([-1,3]\) is equal to :
Let $H$ be the hyperbola, whose foci are $(1 \pm \sqrt{2}, 0)$ and eccentricity is $\sqrt{2}$. Then the length of its latus rectum is _____
Let \(P(x_0, y_0)\) be the point on the hyperbola \(3x^2 - 4y^2 = 36\), which is nearest to the line \(3x + 2y = 1\). Then \(\sqrt{2}(y_0 - x_0)\) is equal to:
Let the system of linear equations$-x + 2y - 9z = 7$,$-x + 3y + 72 = 9$,$-2x + y + 5z = 8$,$-3x + y + 13z = \lambda$has a unique solution $x = \alpha, y = \beta, z = \gamma$. Then the distance of the point $(\alpha, \beta, \gamma)$ from the plane $2x - 2y + z = \lambda$ is: