Height of tower AB is 30 m where B is foot of tower. Angle of elevation from a point C on level ground to top of tower is 60° and angle of elevation of A from a point D x m above C is 15° then find the area of quadrilateral ABCD.
tan 60° = \(\frac{30}{y}\) = \(\sqrt{3}\)
\(\Rightarrow\) y = 10\(\sqrt{3}\)
tan 15° = \(\frac{30-x}{y}\)
(2 - \(\sqrt{3}\))10\(\sqrt{3}\) = 30-x
x = 30-20\(\sqrt{3}\) + 30
x = 60-20\(\sqrt{3}\)
Area of ABCD = xy =(60-2\(\sqrt{3}\)).10\(\sqrt{3}\)
= 600(\(\sqrt{3}\)-1)
Let \(\alpha\ and\ \beta\) be real numbers such that \(-\frac{\pi}{4}<\beta<0<\alpha<\frac{\pi}{4}\). If \(\sin (\alpha+\beta)=\frac{1}{3}\ and\ \cos (\alpha-\beta)=\frac{2}{3}\), then the greatest integer less than or equal to
\(\left(\frac{\sin \alpha}{\cos \beta}+\frac{\cos \beta}{\sin \alpha}+\frac{\cos \alpha}{\sin \beta}+\frac{\sin \beta}{\cos \alpha}\right)^2\) is ____
Statement-1: \( \text{ClF}_3 \) has 3 possible structures.
Statement-2: \( \text{III} \) is the most stable structure due to least lone pair-bond pair (lp-bp) repulsion.
Which of the following options is correct?
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Choke coil is simply a coil having a large inductance but a small resistance. Choke coils are used with fluorescent mercury-tube fittings. If household electric power is directly connected to a mercury tube, the tube will be damaged.
Reason (R): By using the choke coil, the voltage across the tube is reduced by a factor \( \frac{R}{\sqrt{R^2 + \omega^2 L^2}} \), where \( \omega \) is the frequency of the supply across resistor \( R \) and inductor \( L \). If the choke coil were not used, the voltage across the resistor would be the same as the applied voltage.
In light of the above statements, choose the most appropriate answer from the options given below:
The range in statistics for a provided data set is the difference between the highest and lowest values. For instance, if the provided data set is {2,5,8,10,3}, then the range will be 10 – 2 = 8.
Thus, the range could also be described as the difference between the highest observation and lowest observation. The acquired result is called the range of observation. The range in statistics states the spread of observations.