Let \(P(x_0, y_0)\) be the point on the hyperbola \(3x^2 - 4y^2 = 36\), which is nearest to the line \(3x + 2y = 1\). Then \(\sqrt{2}(y_0 - x_0)\) is equal to:
Let A be a $n \times n$ matrix such that $| A |=2$ If the determinant of the matrix$\operatorname{Adj}\left(2 \cdot \operatorname{Adj}\left(2 A ^{-1}\right)\right) \cdot$ is $2^{84}$, then $n$ is equal to ____
Let $y=f(x)=\sin ^3\left(\frac{\pi}{3}\left(\cos \left(\frac{\pi}{3 \sqrt{2}}\left(-4 x^3+5 x^2+1\right)^{\frac{3}{2}}\right)\right)\right)$ Then, at $x=1$
Let $\vec{a}=\hat{i}+2 \hat{j}+\lambda \hat{k}, \vec{b}=3 \hat{i}-5 \hat{j}-\lambda \hat{k}, \vec{a} \cdot \vec{c}=7,2 \vec{b} \cdot \vec{c}+43=0, \vec{a} \times \vec{c}=\vec{b} \times \vec{c}$. Then $|\vec{a} \cdot \vec{b}|$ is equal to