The area enclosed by the curves $y^2+4 x=4$ and $y-2 x=2$ is :
If \( y(x) = x^x, \, x > 0 \), then \( y''(2) - 2y'(2) \) is equal to:
Let the plane P pass through the intersection of the planes \(2 x+3 y-z=2\)and \(x+2 y+3 z=6,\) and be perpendicular to the plane \(2 x+y-z+1=0\)If d is the distance of P from the point (-7,1,1), then \(d^2\) is equal to :
The foot of perpendicular from the origin $O$ to a plane $P$ which meets the co-ordinate axes at the points $A , B , C$ is $(2, a , 4), a \in N$ If the volume of the tetrahedron $OABC$ is 144 unit $^3$, then which of the following points is NOT on $P$ ?
Let the shortest distance between the lines $L: \frac{x-5}{-2}=\frac{y-\lambda}{0}=\frac{z+\lambda}{1}, \lambda \geq 0$ and $L_1: x+1=y-1=4-z$ be $2 \sqrt{6}$ If $(\alpha, \beta, \gamma)$ lies on $L$, then which of the following is NOT possible?
If \(A=\frac{1}{2}\begin{bmatrix}1 & \sqrt{3} \\ -\sqrt{3} & 1\end{bmatrix}\), then :
Let αx=exp(xβyγ) be the solution of the differential equation 2x2ydy−(1−xy2) dx = 0, x>0 , y(2)=\(\sqrt {log_e2}\). Then α+β−γ equals :
For the system of linear equations\(\alpha x+y+z=1, x+\alpha y+z=1, x+y+\alpha z=\beta\) which one of the following statements is NOT correct ?
If a point $P (\alpha, \beta, \gamma)$ satisfying $(\alpha\,\, \beta\,\, \gamma) \begin{pmatrix} 2 & 10 & 8 \\9 & 3 & 8 \\8 & 4 & 8\end{pmatrix}=(0\,\,0\,\,0) $ lies on the plane $2 x+4 y+3 z=5$, then $6 \alpha+9 \beta+7 \gamma$ is equal to :
The absolute difference of the coefficients of \(x^{10}\) and \(x^7\) in the expansion of \(\left(2x^2 + \frac{1}{2x}\right)^{11}\) is equal to: