The given curves are:
\[
y^2 + 4x = 4 \quad \text{(a parabola)}, \quad \text{and} \quad y = 2x - 2 \quad \text{(a straight line)}.
\]
Rewriting the first equation:
\[
x = \frac{4 - y^2}{4}.
\]
The points of intersection are found by solving:
\[
\frac{4 - y^2}{4} = \frac{y + 2}{2}.
\]
Simplifying:
\[
4 - y^2 = 2(y + 2),
\]
\[
4 - y^2 = 2y + 4,
\]
\[
y^2 + 2y = 0,
\]
\[
y(y + 2) = 0 \implies y = 0, -2.
\]
The area is given by:
\[
A = \int_{-2}^{0} \left[ \frac{4 - y^2}{4} - \frac{y + 2}{2} \right] dy.
\]
Simplify the integrand:
\[
\frac{4 - y^2}{4} - \frac{y + 2}{2} = \frac{4 - y^2}{4} - \frac{2y + 4}{4} = \frac{-y^2 - 2y}{4}.
\]
Thus:
\[
A = \int_{-2}^{0} \frac{-y^2 - 2y}{4} dy = \frac{1}{4} \int_{-2}^{0} (-y^2 - 2y) dy.
\]
Evaluate the integral:
\[
\int (-y^2 - 2y) dy = \left[ -\frac{y^3}{3} - y^2 \right]_{-2}^{0}.
\]
At \( y = 0 \):
\[
-\frac{0^3}{3} - 0^2 = 0.
\]
At \( y = -2 \):
\[
-\frac{(-2)^3}{3} - (-2)^2 = -\frac{-8}{3} - 4 = \frac{8}{3} - 4 = \frac{-4}{3}.
\]
So:
\[
A = \frac{1}{4} \left( 0 - \frac{-4}{3} \right) = \frac{1}{4} \cdot \frac{4}{3} = \frac{23}{3}.
\]
Thus, the area is:
\[
\boxed{\frac{23}{3}}
\]