A vector \(\vec{a}\)is parallel to the line of intersection of the plane determined by the vectors\(\hat{i},\hat{i}+\hat{j} \)and the plane determined by the vectors \(\hat{i}−\hat{j},\hat{i}+\hat{k}\). The obtuse angle between \(\vec{a}\) and the vector \(\vec{b}=\hat{i}−2\hat{j}+2\hat{k}\)is
The letters of the work ‘MANKIND’ are written in all possible orders and arranged in serial order as in an English dictionary. Then the serial number of the word ‘MANKIND’ is ______.
If \(\sum\limits_{k=1}^{31}\) \((^{31}C_k) (^{31}C_{k-1})\) \(-\sum\limits_{k=1}^{30}\) \((^{30}C_k) (^{30}C_{k-1})\) \(= \frac{α (60!)} {(30!) (31!)}\)where \(α ∈ R\), then the value of 16α is equal to
If\((^{40}C_0) + (^{41}C_1) + (^{42}C_2) + ...... + (^{60}C_{20}) \frac{m}{n} ^{60}C_{20}\)m and n are coprime, then m + n is equal to _____.
The number of ways to distribute 30 identical candies among four children C1, C2, C3 and C4 so that C2 receives atleast 4 and atmost 7 candies, C3 receives atleast 2 and atmost 6 candies, is equal to:
Let the common tangents to the curves 4(x2 + y2) = 9 and y2 = 4x intersect at the point Q. Let an ellipse, centered at the origin O, has lengths of semi-minor and semi-major axes equal to OQ and 6, respectively. If e and I respectively denote the eccentricity and the length of the latus rectum of this ellipse, then \(\frac{1}{e^2}\) is equal to
Let the tangent drawn to the parabola y2 = 24x at the point (α, β) is perpendicular to the line 2x + 2y = 5. Then the normal to the hyperbola\(\frac{x^2}{α^2}−\frac{y^2}{β^2}=1\)at the point (α + 4, β + 4) does NOT pass through the point
An ellipse\(E:\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)passes through the vertices of the hyperbola\(H:\frac{x^2}{49} - \frac{y^2}{64} = -1\)Let the major and minor axes of the ellipse E coincide with the transverse and conjugate axes of the hyperbola H, respectively. Let the product of the eccentricities of E and H be 1/2. If the length of the latus rectum of the ellipse E, then the value of 113l is equal to _____.
Let z1 and z2 be two complex numbers such that
\(z_1=iz_2 \,and \,arg(\frac{z_1}{z_2})=π.\)