Since \(L\) is parallel to \(PQ\) d.r.s of \(S\) is \((1, 1, 1)\)
\(L=\frac {x−1}{1}=\frac {y+1}{1}=\frac {z+1}{1}\)
Point of intersection of \(L\) and \(S\) be \(λ\)
\((λ + 1) + (λ – 1) + (λ – 1) = S\)
\(λ = 2\)
\(R= (3, 1, 1)\)
Let \(Q (α, β, γ)\)
\(\frac {α−1}{1}=\frac β1=\frac {γ−1}{1}=−\frac {2(3)}{3}\)
\(α = 3\)
\(β = 2\)
\(γ = 3\)
\(Q≡ (3, 2, 3)\)
\((QR)^2 = 0^2 + (1)^2 + (2)^2 = 5\)
\((QR)^2 = 5\)
So, the correct option is (B): \(5\)
Let one focus of the hyperbola \( H : \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 \) be at \( (\sqrt{10}, 0) \) and the corresponding directrix be \( x = \dfrac{9}{\sqrt{10}} \). If \( e \) and \( l \) respectively are the eccentricity and the length of the latus rectum of \( H \), then \( 9 \left(e^2 + l \right) \) is equal to:
If \( S \) and \( S' \) are the foci of the ellipse \[ \frac{x^2}{18} + \frac{y^2}{9} = 1 \] and \( P \) is a point on the ellipse, then \[ \min (SP \cdot S'P) + \max (SP \cdot S'P) \] is equal to:

When a plane intersects a cone in multiple sections, several types of curves are obtained. These curves can be a circle, an ellipse, a parabola, and a hyperbola. When a plane cuts the cone other than the vertex then the following situations may occur:
Let ‘β’ is the angle made by the plane with the vertical axis of the cone
Read More: Conic Sections