The correct answer is option (C): \(\frac{32}{3}\)
a(x - 3)+b(y + 4)+c(z - 7) = 0
P : 9a - b -5c = 0
-11a - b + 5c = 0
After solving DR's ∝ (1, -1 , 2)
Equation of plane
x - y + 2z = 21
\(d=\frac{8}{\sqrt6}\)
\(d^2=\frac{32}{2}\)
If a tangent to the hyperbola \( x^2 - \frac{y^2}{3} = 1 \) is also a tangent to the parabola \( y^2 = 8x \), then the equation of such tangent with the positive slope is:
If a circle of radius 4 cm passes through the foci of the hyperbola \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) and is concentric with the hyperbola, then the eccentricity of the conjugate hyperbola of that hyperbola is:
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32
When a plane intersects a cone in multiple sections, several types of curves are obtained. These curves can be a circle, an ellipse, a parabola, and a hyperbola. When a plane cuts the cone other than the vertex then the following situations may occur:
Let ‘β’ is the angle made by the plane with the vertical axis of the cone
Read More: Conic Sections