Let the tangent drawn to the parabola y2 = 24x at the point (α, β) is perpendicular to the line 2x + 2y = 5. Then the normal to the hyperbola
\(\frac{x^2}{α^2}−\frac{y^2}{β^2}=1\)
at the point (α + 4, β + 4) does NOT pass through the point
Any tangent to y2 = 24x at (α, β)
βy = 12(x + α)
Slope=\(\frac{12}{β}\) and perpendicular to 2x+2y=5
\(\frac{12}{β}=1\)
β=12,
α=6
Hence, hyperbola is
\(\frac{x^2}{36}−\frac{y^2}{144}=1\)
and normal is drawn at (10, 16)
Equation of normal
\(\frac{36⋅x}{10}+\frac{144⋅y}{16}=\)36+144
\(=\frac{x}{50}+\frac{y}{20}=1\)
This does not pass though (15, 13) out of given option.
So, the correct option is (D): (15, 13)
If \( S \) and \( S' \) are the foci of the ellipse \[ \frac{x^2}{18} + \frac{y^2}{9} = 1 \] and \( P \) is a point on the ellipse, then \[ \min (SP \cdot S'P) + \max (SP \cdot S'P) \] is equal to:
Let one focus of the hyperbola \( H : \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 \) be at \( (\sqrt{10}, 0) \) and the corresponding directrix be \( x = \dfrac{9}{\sqrt{10}} \). If \( e \) and \( l \) respectively are the eccentricity and the length of the latus rectum of \( H \), then \( 9 \left(e^2 + l \right) \) is equal to:

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.
When a plane intersects a cone in multiple sections, several types of curves are obtained. These curves can be a circle, an ellipse, a parabola, and a hyperbola. When a plane cuts the cone other than the vertex then the following situations may occur:
Let ‘β’ is the angle made by the plane with the vertical axis of the cone
Read More: Conic Sections