Let the tangent drawn to the parabola y2 = 24x at the point (α, β) is perpendicular to the line 2x + 2y = 5. Then the normal to the hyperbola
\(\frac{x^2}{α^2}−\frac{y^2}{β^2}=1\)
at the point (α + 4, β + 4) does NOT pass through the point
Any tangent to y2 = 24x at (α, β)
βy = 12(x + α)
Slope=\(\frac{12}{β}\) and perpendicular to 2x+2y=5
\(\frac{12}{β}=1\)
β=12,
α=6
Hence, hyperbola is
\(\frac{x^2}{36}−\frac{y^2}{144}=1\)
and normal is drawn at (10, 16)
Equation of normal
\(\frac{36⋅x}{10}+\frac{144⋅y}{16}=\)36+144
\(=\frac{x}{50}+\frac{y}{20}=1\)
This does not pass though (15, 13) out of given option.
So, the correct option is (D): (15, 13)
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

When a plane intersects a cone in multiple sections, several types of curves are obtained. These curves can be a circle, an ellipse, a parabola, and a hyperbola. When a plane cuts the cone other than the vertex then the following situations may occur:
Let ‘β’ is the angle made by the plane with the vertical axis of the cone
Read More: Conic Sections