The number of ways to distribute 30 identical candies among four children C1, C2, C3 and C4 so that C2 receives atleast 4 and atmost 7 candies, C3 receives atleast 2 and atmost 6 candies, is equal to:
The correct answer is (D) : 430
By multinomial theorem, no. of ways to distribute 30 identical candies among four children C1, C2 and C3, C4
= Coefficient of x30 in (x4 + x5 + … + x7) (x2 + x3 +…+ x6) (1 + x + x2…)2
=Coefficient of x24 in \(\frac{(1−x^4)(1−x^5)(1−x^{31})^2}{(1−x)(1-x)(1-x)^2}\)
= Coefficient of x24 in (1 – x4 – x5 + x9) (1 – x)–4
= 27C24 – 23C20 – 22C19 + 18C15 = 430
A bob of mass \(m\) is suspended at a point \(O\) by a light string of length \(l\) and left to perform vertical motion (circular) as shown in the figure. Initially, by applying horizontal velocity \(v_0\) at the point ‘A’, the string becomes slack when the bob reaches at the point ‘D’. The ratio of the kinetic energy of the bob at the points B and C is:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Permutation is the method or the act of arranging members of a set into an order or a sequence.
Combination is the method of forming subsets by selecting data from a larger set in a way that the selection order does not matter.