Let $ A = \{-3, -2, -1, 0, 1, 2, 3\} $ and $ R $ be a relation on $ A $ defined by $ xRy $ if and only if $ 2x - y \in \{0, 1\} $. Let $ l $ be the number of elements in $ R $. Let $ m $ and $ n $ be the minimum number of elements required to be added in $ R $ to make it reflexive and symmetric relations, respectively. Then $ l + m + n $ is equal to: