Let \( A \) be a \( 3 \times 3 \) real matrix such that \[ A^{2}(A - 2I) - 4(A - I) = O, \] where \( I \) and \( O \) are the identity and null matrices, respectively.
If \[ A^{5} = \alpha A^{2} + \beta A + \gamma I, \] where \( \alpha, \beta, \gamma \) are real constants, then \( \alpha + \beta + \gamma \) is equal to:
We are given a \(3 \times 3\) real matrix \(A\) such that:
\[ A^2(A - 2I) - 4(A - I) = O \]
where \(I\) and \(O\) are the identity and null matrices, respectively. We are to find \(\alpha + \beta + \gamma\) if
\[ A^5 = \alpha A^2 + \beta A + \gamma I. \]
This problem involves expressing higher powers of a matrix in terms of lower powers using polynomial relations (similar to the Cayley-Hamilton theorem).
The given condition is a polynomial identity satisfied by \(A\). We can rearrange it to express \(A^3\) in terms of \(A^2, A,\) and \(I\), then use successive multiplication to reach \(A^5\).
Step 1: Expand the given equation:
\[ A^2(A - 2I) - 4(A - I) = 0 \] \[ A^3 - 2A^2 - 4A + 4I = 0 \] \[ A^3 = 2A^2 + 4A - 4I \]
Step 2: Compute \(A^4\).
\[ A^4 = A \cdot A^3 = A(2A^2 + 4A - 4I) = 2A^3 + 4A^2 - 4A \]
Now substitute \(A^3 = 2A^2 + 4A - 4I\):
\[ A^4 = 2(2A^2 + 4A - 4I) + 4A^2 - 4A \] \[ A^4 = (4A^2 + 8A - 8I) + (4A^2 - 4A) \] \[ A^4 = 8A^2 + 4A - 8I \]
Step 3: Compute \(A^5\).
\[ A^5 = A \cdot A^4 = A(8A^2 + 4A - 8I) = 8A^3 + 4A^2 - 8A \]
Substitute \(A^3 = 2A^2 + 4A - 4I\):
\[ A^5 = 8(2A^2 + 4A - 4I) + 4A^2 - 8A \] \[ A^5 = (16A^2 + 32A - 32I) + 4A^2 - 8A \] \[ A^5 = 20A^2 + 24A - 32I \]
Hence, comparing with \(A^5 = \alpha A^2 + \beta A + \gamma I\):
\[ \alpha = 20, \quad \beta = 24, \quad \gamma = -32 \]
\[ \alpha + \beta + \gamma = 20 + 24 - 32 = 12 \]
Answer: 12
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Let the matrix $ A = \begin{pmatrix} 1 & 0 & 0 \\1 & 0 & 1 \\0 & 1 & 0 \end{pmatrix} $ satisfy $ A^n = A^{n-2} + A^2 - I $ for $ n \geq 3 $. Then the sum of all the elements of $ A^{50} $ is:
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
For a statistical data \( x_1, x_2, \dots, x_{10} \) of 10 values, a student obtained the mean as 5.5 and \[ \sum_{i=1}^{10} x_i^2 = 371. \] He later found that he had noted two values in the data incorrectly as 4 and 5, instead of the correct values 6 and 8, respectively.
The variance of the corrected data is: