Step 1: Recall the properties of equivalence relations: a relation \( R \) is an equivalence relation if it is reflexive, symmetric, and transitive.
Step 2: - Reflexive: For every \( x \) in the given interval, \( x R x \) must hold. That is, we check if \( \sec^2 x - \tan^2 x = 1 \). This is true for all \( x \) in the interval \( \left[ 0, \frac{\pi}{2} \right] \), so the relation is reflexive.
- Symmetric: For the relation to be symmetric, if \( x R y \), then \( y R x \) must also hold. Since the equation involves both \( x \) and \( y \) in a symmetric manner, the relation is symmetric.
- Transitive: For transitivity, if \( x R y \) and \( y R z \), then \( x R z \) must hold. This property holds as well, meaning the relation is transitive. Thus, \( R \) is reflexive, symmetric, and transitive, so it is an equivalence relation.
Let \( \alpha, \beta \) be the roots of the equation \( x^2 - ax - b = 0 \) with \( \text{Im}(\alpha) < \text{Im}(\beta) \). Let \( P_n = \alpha^n - \beta^n \). If \[ P_3 = -5\sqrt{7}, \quad P_4 = -3\sqrt{7}, \quad P_5 = 11\sqrt{7}, \quad P_6 = 45\sqrt{7}, \] then \( |\alpha^4 + \beta^4| \) is equal to:
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 