Step 1: Recall the properties of equivalence relations: a relation \( R \) is an equivalence relation if it is reflexive, symmetric, and transitive.
Step 2: - Reflexive: For every \( x \) in the given interval, \( x R x \) must hold. That is, we check if \( \sec^2 x - \tan^2 x = 1 \). This is true for all \( x \) in the interval \( \left[ 0, \frac{\pi}{2} \right] \), so the relation is reflexive.
- Symmetric: For the relation to be symmetric, if \( x R y \), then \( y R x \) must also hold. Since the equation involves both \( x \) and \( y \) in a symmetric manner, the relation is symmetric.
- Transitive: For transitivity, if \( x R y \) and \( y R z \), then \( x R z \) must hold. This property holds as well, meaning the relation is transitive. Thus, \( R \) is reflexive, symmetric, and transitive, so it is an equivalence relation.
For \( X = (x_1, x_2, x_3)^T \in \mathbb{R}^3 \), consider the quadratic form:
\[ Q(X) = 2x_1^2 + 2x_2^2 + 3x_3^2 + 4x_1x_2 + 2x_1x_3 + 2x_2x_3. \] Let \( M \) be the symmetric matrix associated with the quadratic form \( Q(X) \) with respect to the standard basis of \( \mathbb{R}^3 \).
Let \( Y = (y_1, y_2, y_3)^T \in \mathbb{R}^3 \) be a non-zero vector, and let
\[ a_n = \frac{Y^T(M + I_3)^{n+1}Y}{Y^T(M + I_3)^n Y}, \quad n = 1, 2, 3, \dots \] Then, the value of \( \lim_{n \to \infty} a_n \) is equal to (in integer).