Given the displacement equation:
\( x = c_0 (t^2 - 2) + c (t - 2)^2 \)
We can expand this:
\( x = c_0 t^2 - 2c_0 + c (t^2 - 4t + 4) \)
\( x = c_0 t^2 - 2c_0 + c t^2 - 4ct + 4c \)
\( x = (c_0 + c) t^2 - 4ct + (4c - 2c_0) \)
To find the velocity, we differentiate the displacement equation with respect to time:
\( v = \frac{dx}{dt} = \frac{d}{dt} [(c_0 + c) t^2 - 4ct + (4c - 2c_0)] \)
\( v = 2(c_0 + c) t - 4c \)
To find the acceleration, we differentiate the velocity equation with respect to time:
\( a = \frac{dv}{dt} = \frac{d}{dt} [2(c_0 + c) t - 4c] \)
\( a = 2(c_0 + c) \)
The acceleration of the particle is \( 2(c_0 + c) \).
Thus, the correct statement is:
the acceleration of the particle is \( 2(c + c_0) \)
Final Answer: The final answer is the acceleration of the particle is \( 2(c + c_0) \)
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: