We are given the integral and need to determine the values of \( a \) and \( \beta \).
Step 1: Use symmetry in the integrand. The function inside the integral is even, so we can simplify the integral by considering only the range \( 0 \) to \( \frac{\pi}{2} \).
Step 2: Solve the integral by applying suitable integration techniques or look up standard results.
Step 3: Once the integral is computed, compare it with the given form \( \pi(a\pi^2 + \beta) \) to find \( a \) and \( \beta \).
Step 4: Compute \( (a + \beta)^2 \).
Final Conclusion: The value of \( (a + \beta)^2 \) is 100, which is Option 1.
Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.
A stationary tank is cylindrical in shape with two hemispherical ends and is horizontal, as shown in the figure. \(R\) is the radius of the cylinder as well as of the hemispherical ends. The tank is half filled with an oil of density \(\rho\) and the rest of the space in the tank is occupied by air. The air pressure, inside the tank as well as outside it, is atmospheric. The acceleration due to gravity (\(g\)) acts vertically downward. The net horizontal force applied by the oil on the right hemispherical end (shown by the bold outline in the figure) is:
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: