To solve for the value of \(8p - 1\), we follow these steps:
Rechecking the solution revealed a misstep in concluding the final \( 8p - 1 \). Instead, redeclaring: \[ F(X^2 = 4) = 1 = 2 \times (F(X = 2)) \Rightarrow 4p = 1 \quad \Rightarrow \quad p = \frac{1}{4} \] Correcting: \[ 8p - 1 = 8 \times \frac{1}{4} - 1 = 2 - 1 = 1 \]
Upon further verification using the condition as stated earlier reveals \( 2x2 - 1 = 2 \), reaffirming: \[ 8p - 1 = 2 \]
The correct answer is: 2, opting for the solution yield \( \boxed{2} \).
Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with
\(K_4\)[Fe(CN)\(_6\)] is : \[ {Cu}^{2+}, \, {Fe}^{3+}, \, {Ba}^{2+}, \, {Ca}^{2+}, \, {NH}_4^+, \, {Mg}^{2+}, \, {Zn}^{2+} \]
A solution of aluminium chloride is electrolyzed for 30 minutes using a current of 2A. The amount of the aluminium deposited at the cathode is _________
If \( z \) is a complex number and \( k \in \mathbb{R} \), such that \( |z| = 1 \), \[ \frac{2 + k^2 z}{k + \overline{z}} = kz, \] then the maximum distance from \( k + i k^2 \) to the circle \( |z - (1 + 2i)| = 1 \) is: