Using the magnification formula for mirrors: \[ m = \frac{f}{u-f} \] For the concave mirror, the object distance is \( u = -18 \, \text{cm} \), and the focal length is \( f = \frac{R}{2} = 6 \, \text{cm} \), where \( R = 12 \, \text{cm} \): \[ m_1 = \frac{6}{18 - 6} = \frac{1}{2} \]

For the convex mirror, the object distance is the same, and the focal length is positive: \[ m_2 = \frac{6}{18 + 6} = \frac{1}{4} \] Hence, the ratio of the sizes of the images formed by the convex mirror and the concave mirror is: \[ \frac{m_2}{m_1} = \frac{1/4}{1/2} = \frac{1}{2} \]

Thus, the correct answer is: \[ \frac{1}{2} \]
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
