Step 1: Understanding the Dissociation of Salt MX\(_3\)
The salt MX\(_3\) dissociates in water as follows: \[ \text{MX}_3 \rightarrow \text{M}^{3+} + 3\text{X}^- \] For each mole of MX\(_3\), it dissociates to give one mole of M\(^{3+}\) and three moles of X\(^-\).
Step 2: van't Hoff Factor (i)
The van't Hoff factor \(i\) is given as \(i = 2\). The van't Hoff factor represents the total number of particles in solution per formula unit of solute. In this case, for MX\(_3\), the dissociation would produce 4 particles (1 M\(^{3+}\) and 3 X\(^-\)) per formula unit of MX\(_3\).
However, since \(i = 2\), this suggests that the dissociation is not complete, and the actual number of particles formed is only double the initial number of formula units.
Step 3: Using the Formula for Percentage Dissociation
The formula for the percentage dissociation (\(\alpha\)) is given by: \[ i = 1 + \alpha (n - 1) \] Where:
\(i\) is the van't Hoff factor (2 in this case), \(\alpha\) is the degree of dissociation, \(n\) is the number of ions produced per formula unit of solute (which is 4 for MX\(_3\)).
\[ 2 = 1 + \alpha (4 - 1) \] \[ 2 = 1 + 3\alpha \] \[ 3\alpha = 1 \] \[ \alpha = \frac{1}{3} \]
Step 4: Calculating the Percentage Dissociation
The percentage dissociation is given by:
\[ \text{Percentage dissociation} = \alpha \times 100 = \frac{1}{3} \times 100 = 33.33% \] To the nearest integer, the percentage dissociation is 33%.
The cause for deviation from Raoult’s law in the colligative properties of non-ideal solutions lies in the nature of interactions at the molecular level. These properties show deviations from Raoult’s law due to difference in interactions between solute–solvent, solute–solute and solvent–solvent. Some liquids on mixing form azeotropes which are binary mixtures having the same composition in liquid and vapour phase and boil at a constant temperature. In such cases, it is not possible to separate the components by fractional distillation. There are two types of azeotropes called minimum boiling azeotrope and maximum boiling azeotrope. (a) Pure ethanol cannot be prepared by fractional distillation of ethanol–water mixture. Comment.
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).