Let the position vectors of the vertices \( A, B \) and \( C \) of a triangle be \[ 2\mathbf{i} + 2\mathbf{j} + \mathbf{k}, \quad \mathbf{i} + 2\mathbf{j} + 2\mathbf{k} \quad \text{and} \quad 2\mathbf{i} + \mathbf{j} + 2\mathbf{k} \] respectively. Let \( l_1, l_2 \) and \( l_3 \) be the lengths of the perpendiculars drawn from the ortho center of the triangle on the sides \( AB, BC \) and \( CA \) respectively. Then \( l_1^2 + l_2^2 + l_3^2 \) equals: