The bulk modulus is defined as: \[ B = - \frac{\Delta P}{\frac{\Delta V}{V}} \] Rearranging: \[ \Delta V = \frac{\Delta P}{B} V \] The volume of the cube is: \[ V = (10 \, { cm})^3 = 1000 \, { cm}^3 \] Converting to \( m^3 \): \[ V = 10^{-3} \, { m}^3 \] Substituting values: \[ \Delta V = \frac{(7 \times 10^6)}{1.4 \times 10^{11}} \times 10^{-3} \] \[ \Delta V = 5 \times 10^{-8} \, { m}^3 \] Converting to mm\(^3\): \[ \Delta V = 10.0 \, { mm}^3 \]
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is: