The bulk modulus is defined as: \[ B = - \frac{\Delta P}{\frac{\Delta V}{V}} \] Rearranging: \[ \Delta V = \frac{\Delta P}{B} V \] The volume of the cube is: \[ V = (10 \, { cm})^3 = 1000 \, { cm}^3 \] Converting to \( m^3 \): \[ V = 10^{-3} \, { m}^3 \] Substituting values: \[ \Delta V = \frac{(7 \times 10^6)}{1.4 \times 10^{11}} \times 10^{-3} \] \[ \Delta V = 5 \times 10^{-8} \, { m}^3 \] Converting to mm\(^3\): \[ \Delta V = 10.0 \, { mm}^3 \]
Let $ a_1, a_2, a_3, \ldots $ be in an A.P. such that $$ \sum_{k=1}^{12} 2a_{2k - 1} = \frac{72}{5}, \quad \text{and} \quad \sum_{k=1}^{n} a_k = 0, $$ then $ n $ is: