The combustion reaction of benzene: \[ C_6H_6 + \frac{15}{2} O_2 \rightarrow 6CO_2 + 3H_2O \] Using Hess's law: \[ \Delta H_f(C_6H_6) = \Delta H_c - \left( 6\Delta H_f(CO_2) + 3\Delta H_f(H_2O) \right) \] \[ = -3267 - \left(6(-393.5) + 3(-286.0)\right) \] \[ = -3267 + 2361 + 858 \] \[ = -48.5 \approx 49 \, { kJ/mol} \]
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)