We are given a geometric progression (G.P.) where:
In a geometric progression, the terms are given by: - \( a_1 = a \) - \( a_2 = a r \) - \( a_3 = a r^2 \) - \( a_4 = a r^3 \) - \( a_5 = a r^4 \) - \( a_6 = a r^5 \) Now, let's use the given conditions:
\[ a \cdot a r^4 = 28 \quad \Rightarrow \quad a^2 r^4 = 28 \quad \text{...(1)} \]
\[ a r + a r^3 = 29 \quad \Rightarrow \quad a r (1 + r^2) = 29 \] \[ \Rightarrow a^2 r^2 (1 + r^2)^2 = 29^2 \quad \text{...(2)} \]
From equation (1): \[ a^2 r^4 = 28 \] From equation (2): \[ a^2 r^2 (1 + r^2)^2 = 29^2 \] Dividing equation (2) by equation (1): \[ \frac{r^2}{(1 + r^2)^2} = \frac{28}{29^2} \] \[ \Rightarrow \frac{r}{1 + r^2} = \frac{\sqrt{28}}{29} \] Therefore: \[ r = \sqrt{28} \]
Now substitute \( r = \sqrt{28} \) into equation (1): \[ a^2 r^4 = 28 \] \[ a^2 \times (28)^2 = 28 \] \[ a^2 \times 784 = 28 \quad \Rightarrow \quad a^2 = \frac{28}{784} = \frac{1}{28} \] \[ a = \frac{1}{\sqrt{28}} \]
Now, we calculate \( a_6 \): \[ a_6 = a r^5 \] Substituting \( a = \frac{1}{\sqrt{28}} \) and \( r = \sqrt{28} \): \[ a_6 = \frac{1}{\sqrt{28}} \times (28)^2 \times \sqrt{28} \] \[ a_6 = \frac{1}{\sqrt{28}} \times 784 \times \sqrt{28} = 784 \]
Therefore, the value of \( a_6 \) is: \[ \boxed{784} \]
Let $ a_1, a_2, a_3, \ldots $ be in an A.P. such that $$ \sum_{k=1}^{12} 2a_{2k - 1} = \frac{72}{5}, \quad \text{and} \quad \sum_{k=1}^{n} a_k = 0, $$ then $ n $ is:
The sum $ 1 + \frac{1 + 3}{2!} + \frac{1 + 3 + 5}{3!} + \frac{1 + 3 + 5 + 7}{4!} + ... $ upto $ \infty $ terms, is equal to
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to:
Let \( \alpha, \beta \) be the roots of the equation \( x^2 - ax - b = 0 \) with \( \text{Im}(\alpha) < \text{Im}(\beta) \). Let \( P_n = \alpha^n - \beta^n \). If \[ P_3 = -5\sqrt{7}, \quad P_4 = -3\sqrt{7}, \quad P_5 = 11\sqrt{7}, \quad P_6 = 45\sqrt{7}, \] then \( |\alpha^4 + \beta^4| \) is equal to: