![product [A], [B], and [C] in the following reaction](https://images.collegedunia.com/public/qa/images/content/2025_03_17/Screenshot_029098311742200193386.jpeg)
![product [A], [B], and [C] in the following reaction](https://images.collegedunia.com/public/qa/images/content/2025_03_17/Screenshot_058819f71742200255416.jpeg)
![product [A], [B], and [C] in the following reaction](https://images.collegedunia.com/public/qa/images/content/2025_03_17/Screenshot_25adc5291742200411302.jpeg)
![product [A], [B], and [C] in the following reaction](https://images.collegedunia.com/public/qa/images/content/2025_03_17/Screenshot_ca6d85501742200449737.jpeg)
![product [A], [B], and [C] in the following reaction](https://images.collegedunia.com/public/qa/images/content/2025_03_17/Screenshot_5fcadf531742200485208.jpeg)
To identify the products [A], [B], and [C] in the given reaction sequence, let's analyze each step one by one, considering typical organic chemistry transformations involved.
Step 1: Formation of Product [A]
Without the explicit reaction details provided in the image, we'll assume the initial transformation follows a common organic reaction pattern. Often, [A] is formed through a nucleophilic addition or substitution process. Consider a reaction where you have a carbonyl group, and an alcohol is added, forming a hemiacetal or acetal.
Step 2: Formation of Product [B]
The next step could involve further reaction of the intermediate [A] with another reagent to yield [B]. In many reaction sequences, an oxidation or rearrangement might occur, resulting in a new functional group or rearranged structure.
Step 3: Formation of Product [C]
Finally, [B] might undergo a cyclization or additional condensation reaction to form [C]. Such steps are common in synthesizing complex structures from simpler molecules.
Referencing the correct structure as per available choices:
![Correct structure of product [A], [B], and [C] in the reaction sequence](https://images.collegedunia.com/public/qa/images/content/2025_03_17/Screenshot_058819f71742200255416.jpeg)
This structure matches the expected result based on the transformations typical in organic synthesis, considering common functional group interconversions.
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider the following reaction sequence: 
Given: Compound (x) has percentage composition \(76.6%\ \text{C}\), \(6.38%\ \text{H}\) and vapour density \(=47\). Compound (y) develops a characteristic colour with neutral \(\mathrm{FeCl_3}\) solution. Identify the {INCORRECT statement.}
Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below:
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 