Which of the following is/are correct with respect to the energy of atomic orbitals of a hydrogen atom?
(A) \( 1s<2s<2p<3d<4s \)
(B) \( 1s<2s = 2p<3s = 3p \)
(C) \( 1s<2s<2p<3s<3p \)
(D) \( 1s<2s<4s<3d \)
Choose the correct answer from the options given below:
The energy ordering of orbitals for hydrogen-like atoms is governed by the principle that the energy increases as the principal quantum number (n) increases, but within the same shell, orbitals with higher angular momentum (l) have higher energy.
Therefore, the correct answers are (A) and (C).
The energy of an electron in first Bohr orbit of H-atom is $-13.6$ eV. The magnitude of energy value of electron in the first excited state of Be$^{3+}$ is _____ eV (nearest integer value)
Correct statements for an element with atomic number 9 are
A. There can be 5 electrons for which $ m_s = +\frac{1}{2} $ and 4 electrons for which $ m_s = -\frac{1}{2} $
B. There is only one electron in $ p_z $ orbital.
C. The last electron goes to orbital with $ n = 2 $ and $ l = 1 $.
D. The sum of angular nodes of all the atomic orbitals is 1.
Choose the correct answer from the options given below:
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with
\(K_4\)[Fe(CN)\(_6\)] is : \[ {Cu}^{2+}, \, {Fe}^{3+}, \, {Ba}^{2+}, \, {Ca}^{2+}, \, {NH}_4^+, \, {Mg}^{2+}, \, {Zn}^{2+} \]