
To determine the major product of the given reaction, we need to analyze the structure and reactivity of the compound involved. The question provides us with the compound 6-Phenylhepta-2,4-diene.
Step 1: Analyze the structure: The compound is a conjugated diene with phenyl substitution at position 6. It has the structure:
Step 2: Electrophilic addition reaction: In electrophilic additions, conjugated dienes like hepta-2,4-diene can undergo 1,2-addition (kinetic control) or 1,4-addition (thermodynamic control).
Step 3: Identify stability: Due to conjugation, electrons can delocalize, making certain products more stable. The reaction typically forms a product where the double bonds remain conjugated, as seen with 6-Phenylhepta-2,4-diene. Conjugated double bonds stabilize the molecule through resonance.
| Option | Product Description |
|---|---|
| 2-Phenylhepta-2,4-diene | Phenyl group at position 2, different from input structure |
| 6-Phenylhepta-3,5-diene | Position of double bonds is shifted, may not be favored |
| 6-Phenylhepta-2,4-diene | Original compound, conjugated diene structure, favored by resonance |
| 2-Phenylhepta-2,5-diene | Non-conjugated, phenyl at position 2 |
Conclusion: The most stable, resonance-stabilized structure is 6-Phenylhepta-2,4-diene, which is the major product.

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):
