Let \( f(x) = \sqrt{x} + \alpha x, \; x > 0 \) and \[ g(x) = a_0 + a_1(x - 1) + a_2(x - 1)^2 \] be the sum of the first three terms of the Taylor series of \( f(x) \) around \( x = 1 \). If \( g(3) = 3 \), then \( \alpha \) is .............
Consider the expansion of the function \( f(x) = \dfrac{3}{(1 - x)(1 + 2x)} \) in powers of \( x \), valid in \( |x| < \dfrac{1}{2}. \) Then the coefficient of \( x^4 \) is ................
Let \( S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} \) and \( f : S \to \mathbb{R} \) be defined by \( f(x) = \frac{1}{x}. \) Then \[ \max \left\{ \delta : |x - \tfrac{1}{3}| < \delta \Rightarrow |f(x) - f(\tfrac{1}{3})| < 1 \right\} \] is ............. (rounded off to two decimal places).
Consider the following system of linear equations: \[ \begin{cases} x + y + 5z = 3, \\ x + 2y + mz = 5, \\ x + 2y + 4z = k. \end{cases} \]
The system is consistent if
Let \( F = \{\omega \in \mathbb{C} : \omega^{2020} = 1\}. \)
Consider the groups \[ G = \left\{ \begin{pmatrix} \omega & z \\ 0 & 1 \end{pmatrix} : \omega \in F, z \in \mathbb{C} \right\} \text{and} H = \left\{ \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} : z \in \mathbb{C} \right\} \] under matrix multiplication.
Then the number of cosets of \( H \) in \( G \) is