Step 1: Apply Green's theorem.
\[
\oint_C P \, dx + Q \, dy = \iint_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA,
\]
where \( P = x^2 y^2, \; Q = x^2 - y^2. \)
Step 2: Compute partial derivatives.
\[
\frac{\partial Q}{\partial x} = 2x, \frac{\partial P}{\partial y} = 2x^2 y.
\]
Hence,
\[
\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 2x - 2x^2 y.
\]
Step 3: Evaluate the double integral over the square \( 0 \le x, y \le 1. \)
\[
\iint_R (2x - 2x^2 y) \, dy \, dx = \int_0^1 \int_0^1 (2x - 2x^2 y) \, dy \, dx.
\]
Integrate w.r.t. \( y \):
\[
= \int_0^1 [2x y - x^2 y^2]_0^1 dx = \int_0^1 (2x - x^2) dx.
\]
Integrate w.r.t. \( x \):
\[
[ x^2 - \frac{x^3}{3} ]_0^1 = 1 - \frac{1}{3} = \frac{2}{3} \approx 0.67.
\]
Final Answer: \[ \boxed{0.67} \]