Step 1: Express the given integral.
\[
I = \int_0^1 \int_{2y}^2 e^{x^2} \, dx \, dy.
\]
Step 2: Change the order of integration.
The region is bounded by \( 0 \le y \le 1 \) and \( 2y \le x \le 2. \)
Inverting limits: \( 0 \le x \le 2, \; 0 \le y \le \frac{x}{2}. \)
\[
I = \int_0^2 \int_0^{x/2} e^{x^2} \, dy \, dx = \int_0^2 e^{x^2} \left( \frac{x}{2} \right) dx = \frac{1}{2} \int_0^2 x e^{x^2} dx.
\]
Step 3: Integrate.
Let \( t = x^2 $\Rightarrow$ dt = 2x dx $\Rightarrow$ x dx = \frac{dt}{2}. \)
\[
I = \frac{1}{2} \cdot \frac{1}{2} \int_0^4 e^t dt = \frac{1}{4}(e^4 - 1).
\]
Hence \( k = \frac{1}{4}. \)
Final Answer: \[ \boxed{k = \frac{1}{4}} \]