Step 1: Chain rule for partial derivatives.
\[
\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}.
\]
Step 2: Compute partial derivatives.
\[
\frac{\partial f}{\partial x} = e^x \sin y, \frac{\partial f}{\partial y} = e^x \cos y.
\]
Also,
\[
\frac{dx}{dt} = 3t^2, \frac{dy}{dt} = 4t^3 + 1.
\]
Step 3: Substitute and evaluate at \( t = 0. \)
At \( t = 0 \), \( x = 1, y = 0. \)
\[
\frac{df}{dt} = e^1 \sin 0 (3(0)^2) + e^1 \cos 0 (1) = e \times 1 = e.
\]
Rounded to two decimal places, \( e \approx 2.72. \)
Final Answer: \[ \boxed{2.72} \]