Step 1: Find the surface area formula
For a surface $z = f(x,y)$, the surface area is: $$\text{Area} = \iint_D \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} , dx,dy$$
Step 2: Calculate partial derivatives
$$\frac{\partial z}{\partial x} = -2x, \quad \frac{\partial z}{\partial y} = -2y$$
Step 3: Substitute into surface area formula
$$\text{Area} = \iint_D \sqrt{1 + (-2x)^2 + (-2y)^2} , dx,dy$$
$$= \iint_D \sqrt{1 + 4x^2 + 4y^2} , dx,dy$$
$$= \iint_D \sqrt{1 + 4(x^2 + y^2)} , dx,dy$$
Step 4: Determine region $D$
The surface is above $z = 0$: $$16 - x^2 - y^2 \geq 0$$ $$x^2 + y^2 \leq 16$$
So $D$ is the disk of radius 4 centered at the origin.
Step 5: Convert to polar coordinates
Let $x = r\cos\theta$, $y = r\sin\theta$, where $0 \leq r \leq 4$ and $0 \leq \theta \leq 2\pi$.
The Jacobian is $dx,dy = r,dr,d\theta$.
$$\text{Area} = \int_0^{2\pi} \int_0^4 \sqrt{1 + 4r^2} \cdot r,dr,d\theta$$
$$= \int_0^{2\pi} \int_0^4 r\sqrt{1 + 4r^2} ,dr,d\theta$$
Verification of options:
(A) $\iint_D \sqrt{1 + 4(x^2 + y^2)} , dx,dy$ - Correct
(B) $\iint_D \sqrt{1 + 2(x^2 + y^2)} , dx,dy$ - Incorrect coefficient
(C) $\int_0^{2\pi} \int_0^4 \sqrt{1 + 4r^2} ,dr,d\theta$ - Missing the $r$ from Jacobian
(D) $\int_0^{2\pi} \int_0^4 \sqrt{1 + 4r^2} ,r,dr,d\theta$ - Correct
Answer: (A) and (D) are correct