Step 1: Parameterize the surface.
Let \(z = xy\). Then
\[
\vec{r}(x,y) = x\hat{i} + y\hat{j} + xy\hat{k}.
\]
Compute
\[
\vec{r}_x = \hat{i} + y\hat{k}, \quad \vec{r}_y = \hat{j} + x\hat{k}.
\]
The normal vector is
\[
\vec{r}_x \times \vec{r}_y = (\hat{i} + y\hat{k}) \times (\hat{j} + x\hat{k}) = (y^2 - x^2)\hat{k} - y\hat{i} - x\hat{j}.
\]
Step 2: Compute \(\vec{F}\cdot\hat{n}\).
Using the positive \(z\)-component convention,
\[
\vec{F}\cdot\hat{n} = (y, x, 1) \cdot (-y, -x, 1) = -x^2 - y^2 + 1.
\]
Step 3: Evaluate the integral.
\[
\iint_S \vec{F}\cdot\hat{n} \, dS = \iint_{x^2+y^2\le1} (1 - x^2 - y^2) \, dx\,dy.
\]
In polar coordinates,
\[
\int_0^{2\pi}\int_0^1 (1 - r^2)r\,dr\,d\theta = 2\pi\int_0^1 (r - r^3)dr = 2\pi\left(\frac{1}{2} - \frac{1}{4}\right) = \frac{\pi}{2}.
\]
Step 4: Conclusion.
Hence, the value of the surface integral is \(\boxed{\frac{\pi}{2}}\).