Consider the subset \( S = \{ (x, y) : x^2 + y^2>0 \} \) of \(\mathbb{R}^2.\)
Let
\[
P(x,y) = \frac{y}{x^2 + y^2}, \quad Q(x,y) = \frac{-x}{x^2 + y^2}.
\]
For \((x, y) \in S.\)
If \(C\) denotes the unit circle traversed in the counter-clockwise direction, then the value of
\[
\frac{1}{\pi} \int_C (P\,dx + Q\,dy)
\]
is _________.