The Particular integral of \((D^3 - 6D^2 + 11D - 6)y = e^{-2x}\) is:
If \( A \) and \( B \) are two events such that \(P(A \cap B) = \frac{1}{3}\), \(P(A \cup B) = \frac{5}{6}\), and \(P(B) = \frac{1}{2}\), then the events are:
The standard deviation for the following frequency is
From the given data value of $\int_{1}^{2} \frac{1}{x} dx$ using Simpson’s 1/3rd rule is
If $$ A = \begin{bmatrix} 2 & 3 & 4 \\0 & 4 & 2 \\0 & 0 & 3 \end{bmatrix} $$ then the eigenvalues of $ \text{adj}(A) $ are
If A is $$ A = \begin{bmatrix} 8 & 7 \\5 & 6 \end{bmatrix} $$ then the value of $ \text{det}(A^{121} - A^{120}) = ? $
Find $x, y, z$ and $w$ given that $3 \begin{bmatrix} x & y \\z & w \end{bmatrix} = \begin{bmatrix} x & 5 \\-1 & 2w \end{bmatrix} +\begin{bmatrix} 6 & x+y \\z+w & 5 \end{bmatrix}$
Find the largest eigenvalue of the matrix $\begin{bmatrix} 5 & 4 \\1 & 2 \end{bmatrix}$
The Laurent series of $ f(z) = \frac{z}{(z^2+1)(z^2+4)} $ for $ |z|<1 $ is: