The eigenvalues of a triangular matrix (upper or lower) are its diagonal elements.
For matrix
\[
A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -3 & 1 \\ 0 & 0 & 4 \end{pmatrix}
\]
the eigenvalues are:
\[
\lambda_1 = 1, \ \lambda_2 = -3, \ \lambda_3 = 4
\]
Now,
\[
\lambda_1 + \lambda_2 + \lambda_3 = 1 + (-3) + 4 = 2
\]
and
\[
\lambda_1 \cdot \lambda_2 \cdot \lambda_3 = 1 \times (-3) \times 4 = -12
\]