\( \frac{220}{e^{20}} \)
Let \( X \) be the number of messages with error. This follows a binomial distribution \( B(n,p) \).
Given: \( n = 1000 \) (number of messages), and probability of error \( p = 1 - 0.98 = 0.02 \).
Since \( n \) is large and \( p \) is small, we can use the Poisson approximation with \( \lambda = np \).
\( \lambda = 1000 \times 0.02 = 20 \), so \( X \sim \text{Poisson}(20) \).
The Probability Mass Function (PMF) for a Poisson distribution is:
\[ P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!} \]
We need to calculate \( P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2) \).
First, calculate \( P(X = 0) \):
\[ P(X = 0) = \frac{e^{-20} 20^0}{0!} = e^{-20} \]
Next, calculate \( P(X = 1) \):
\[ P(X = 1) = \frac{e^{-20} 20^1}{1!} = 20e^{-20} \]
Then, calculate \( P(X = 2) \):
\[ P(X = 2) = \frac{e^{-20} 20^2}{2!} = \frac{e^{-20} \cdot 400}{2} = 200e^{-20} \]
Now, sum the probabilities to get \( P(X \le 2) \):
\[ P(X \le 2) = e^{-20}(1 + 20 + 200) = 221e^{-20} = \frac{221}{e^{20}} \]
Final Answer: \[ \boxed{\frac{221}{e^{20}}} \]