In a communication network, 98% of messages are transmitted correctly with no error. If the random variable X denotes the number of messages transmitted with error, then the probability that at most two messages are transmitted with error out of 1000 messages sent, is
Show Hint
Use Poisson approximation to Binomial when \(n\) is large, \(p\) is small (\(\lambda=np\)).
Poisson PMF: \(P(X=k) = e^{-\lambda}\lambda^k / k!\).
"At most two" means \(k=0, 1, 2\).
Let X be the number of messages with error. This follows a binomial distribution \(B(n,p)\).
\(n = 1000\) (number of messages).
Probability of error \(p = 1 - 0.98 = 0.02\).
Since \(n\) is large and \(p\) is small, we can use Poisson approximation with \(\lambda = np\).
\(\lambda = 1000 \times 0.02 = 20\).
So, \(X \sim Poisson(20)\). The PMF is \(P(X=k) = \frac{e^{-\lambda}\lambda^k}{k!}\).
We need \(P(X \le 2) = P(X=0) + P(X=1) + P(X=2)\).
\(P(X=0) = \frac{e^{-20}20^0}{0!} = e^{-20}\).
\(P(X=1) = \frac{e^{-20}20^1}{1!} = 20e^{-20}\).
\(P(X=2) = \frac{e^{-20}20^2}{2!} = \frac{e^{-20} \cdot 400}{2} = 200e^{-20}\).
\(P(X \le 2) = e^{-20}(1 + 20 + 200) = 221e^{-20} = \frac{221}{e^{20}}\).
\[ \boxed{\frac{221}{e^{20}}} \]