To verify if a vector \(v\) is an eigenvector of a matrix \(A\), we check if \(A v = \lambda v\) for some scalar \(\lambda\).
Let
\[
A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \quad v = \begin{bmatrix} 8 \\ 4 \\ 4 \end{bmatrix}
\]
Then,
\[
Av =
\begin{bmatrix}
2\cdot8 + 1\cdot4 + 1\cdot4 \\
0\cdot8 + 2\cdot4 + 1\cdot4 \\
1\cdot8 + 0\cdot4 + 1\cdot4
\end{bmatrix}
=
\begin{bmatrix}
20 \\
12 \\
12
\end{bmatrix}
= 2.5 \cdot \begin{bmatrix} 8 \\ 4 \\ 4 \end{bmatrix}
\Rightarrow \text{Eigenvalue } \lambda = 2.5
\]