Question:

For the matrix \[ \begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \] an Eigen vector among the following vectors is

Show Hint

To verify an eigenvector, check if multiplying the matrix yields a scalar multiple of the vector.
Updated On: Jun 6, 2025
  • \(\begin{bmatrix} 1
    -2 \\ 2 \end{bmatrix}\)
  • \(\begin{bmatrix} 5
    -2 \\ -1 \end{bmatrix}\)
  • \(\begin{bmatrix} 8
    4 \\ 4 \end{bmatrix}\)
  • \(\begin{bmatrix} 0 \\ 5 \\ 5 \end{bmatrix}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

To verify if a vector \(v\) is an eigenvector of a matrix \(A\), we check if \(A v = \lambda v\) for some scalar \(\lambda\).
Let \[ A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \quad v = \begin{bmatrix} 8 \\ 4 \\ 4 \end{bmatrix} \] Then, \[ Av = \begin{bmatrix} 2\cdot8 + 1\cdot4 + 1\cdot4 \\ 0\cdot8 + 2\cdot4 + 1\cdot4 \\ 1\cdot8 + 0\cdot4 + 1\cdot4 \end{bmatrix} = \begin{bmatrix} 20 \\ 12 \\ 12 \end{bmatrix} = 2.5 \cdot \begin{bmatrix} 8 \\ 4 \\ 4 \end{bmatrix} \Rightarrow \text{Eigenvalue } \lambda = 2.5 \]
Was this answer helpful?
1
0

TS PGECET Notification