If \( X \) is a continuous random variable whose probability density function is given by
\[
f(x) =
\begin{cases}
k(4x - 2x^2), & 0<x<2 \\
0, & \text{otherwise}
\end{cases}
\quad \text{then the value of } k \text{ is:}
\]
Show Hint
To determine a constant in a PDF, always integrate over the support and set the integral equal to 1.
To find \( k \), use the fact that the total area under a probability density function must equal 1:
\[
\int_0^2 k(4x - 2x^2) dx = 1
\]
\[
k \int_0^2 (4x - 2x^2) dx = k \left[ 2x^2 - \frac{2}{3}x^3 \right]_0^2 = k \left( 8 - \frac{16}{3} \right) = k \cdot \frac{8}{3}
\]
\[
\Rightarrow \frac{8k}{3} = 1 \Rightarrow k = \frac{3}{8}
\]