The table below gives values of the function \( f(x) = \frac{1}{x} \) at 5 points of \( x \).} \[ \begin{array}{|c|c|c|c|c|c|} \hline x & 1 & 1.25 & 1.5 & 1.75 & 2 \\ \hline f(x) & 1 & 0.8 & 0.6667 & 0.57143 & 0.5 \\ \hline \end{array} \] The approximate value of \( \int_1^2 \frac{1}{x} \, dx \) using Simpson’s \( \left( \frac{1}{3} \right) \)rd rule is:
To find the approximate value of \(\int_1^2 \frac{1}{x} \, dx\) using Simpson’s \(\left( \frac{1}{3} \right)\)rd rule, we follow these steps:
Simpson’s \(\left( \frac{1}{3} \right)\)rd rule formula for \(\int_a^b f(x) \, dx\) when divided into \(n\) equal segments is:
\(\int_a^b f(x) \, dx \approx \frac{\Delta x}{3} \left[ f(x_0) + 4f(x_1) + 2f(x_2) + \ldots + 4f(x_{n-1}) + f(x_n) \right] \)
Here, \(n\) needs to be even. For \(n=4\) (5 points given: \(x=1, 1.25, 1.5, 1.75, 2\)):
\(\Delta x = \frac{b-a}{n} = \frac{2-1}{4} = 0.25\)
Substitute the values:
Point | \(x_i\) | f(x_i) |
---|---|---|
\(x_0\) | 1 | 1 |
\(x_1\) | 1.25 | 0.8 |
\(x_2\) | 1.5 | 0.6667 |
\(x_3\) | 1.75 | 0.57143 |
\(x_4\) | 2 | 0.5 |
Plug these into Simpson's formula:
\(\int_1^2 \frac{1}{x} \, dx \approx \frac{0.25}{3} \left[ 1 + 4(0.8) + 2(0.6667) + 4(0.57143) + 0.5 \right] \)
\(\approx \frac{0.25}{3} \left[ 1 + 3.2 + 1.3334 + 2.28572 + 0.5 \right] \)
\(\approx \frac{0.25}{3} \times 8.31912\)
\(= \frac{2.07978}{3}\)
\(\approx 0.69326\)
The closest option is \(0.69325\).
The values of a function \( f \) obtained for different values of \( x \) are shown in the table below.
Using Simpson’s one-third rule, approximate the integral \[ \int_0^1 f(x) \, dx \quad \text{(rounded off to 2 decimal places)}. \]
The table below gives the values of \( f(x) \) at five equidistant points of \( x \):
x | 0 | 0.5 | 1.0 | 1.5 | 2.0 |
---|---|---|---|---|---|
f(x) | 0 | 0.25 | 1.0 | 2.25 | 4.0 |
Then the approximate value of \( \int_0^2 f(x) \, dx \) by Trapezoidal Rule is: