If rank(A) is at least 3, then what are the possible values of \( \alpha, \beta, \gamma \)?
If \(u = \sin^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y}{x}\right)\), then the value of \( x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} \) is:
A constant force \(\vec{F} = (4\hat{i} + \hat{j} - 3\hat{k}) \, \text{N} \) moves a particle from \( A: (1, 2, 3) \, \text{m} \text{to} B: (5, 4, 1) \, \text{m}. \)Find the work done by the force (in joules). Answer as an integer.
Consider the matrix \[A = \begin{bmatrix} 5 & -4 \\ k & -1 \end{bmatrix},\] where \(k\) is a constant. If \(\det(A) = 3\), then the ratio of the largest eigenvalue of \(A\) to \(k\) is ___________ (rounded off to 1 decimal place).