To find the sum of all elements of \( P^{-1}AP \), we need to determine \( P^{-1} \) and then compute \( P^{-1}AP \).
Step 1: Compute \( P^{-1} \)
Given \( P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \), an upper triangular matrix. The inverse of an upper triangular matrix is also upper triangular, and we calculate it by back substitution:
\( P^{-1} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \)
Step 2: Compute \( P^{-1}AP \)
Given \( A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix} \), compute \( P^{-1}AP \):
1. Compute \( AP \):
\( AP = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 6 \\ 0 & 0 & 3 \end{pmatrix} \)
2. Compute \( P^{-1}AP \):
\( P^{-1}AP = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 6 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \)
Step 3: Sum of all elements of \( P^{-1}AP \)
The matrix \( P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \) is diagonal, and the sum of its elements is the trace:
Trace = \( 1 + 2 + 3 = 6 \).
Thus, the sum of all elements of \( P^{-1}AP \) is 6.