Given that the Laplace Transform \( \mathcal{L}\{f(t)\} = \frac{1 - e^{-1/s}}{s} \), we want to find the Laplace Transform of \( e^{-t}f(3t) \), denoted as \( \mathcal{L}\{e^{-t}f(3t)\} \).
To solve this, we use the following properties of the Laplace Transform:
Combining these steps, first find the Laplace Transform of \( f(3t) \):
\(\mathcal{L}\{f(3t)\} = \frac{1}{3}F\left(\frac{s}{3}\right) = \frac{1}{3}\left(\frac{1 - e^{-3/s}}{\frac{s}{3}}\right) = \frac{1 - e^{-3/s}}{s}\).
Next, consider the exponential term in \( e^{-t}f(3t) \):
\(\mathcal{L}\{e^{-t}f(t)\} = F(s + 1)\). Applying this to \( f(3t) \), we have:
\(\mathcal{L}\{e^{-t}f(3t)\} = \left.\left(\frac{1 - e^{-3/s}}{s}\right)\right\vert_{s = s + 1} = \frac{1 - e^{-3/(s+1)}}{s+1}\).
Therefore, combining everything together:
\(\frac{1 - e^{-3/(s+1)}}{s+1} \),
which simplifies to the option \( \frac{e^{3/s + 1}}{s + 1} \).