Using the property of determinants:
\[
|A^n| = |A|^n
\]
So,
\[
\left| A^{2024} - A^{2023} \right| = \left| A^{2023} (A - I) \right|
\]
Then, by determinant multiplication property:
\[
= |A^{2023}| \times |A - I|
\]
Now,
\[
|A| = (2024 \times 2022) - (2021 \times 2023)
\]
Simplifying:
Left diagonal product:
\(2024 \times 2022 = 4093632\)
Right diagonal product:
\(2021 \times 2023 = 4093632\)
So,
\[
|A| = 4093632 - 4093632 = 0
\]
Therefore,
\[
|A^{2023}| = 0
\]
And finally,
\[
\left| A^{2024} - A^{2023} \right| = 0 \times |A - I| = 0
\]