In the adjoining figure, if \(\dfrac{AD}{BD} = \dfrac{AE}{EC}\) and \(\angle BDE = \angle CED\), prove that \(\triangle ABC\) is an isosceles triangle.
On the day of her examination, Riya sharpened her pencil from both ends as shown below. The diameter of the cylindrical and conical part of the pencil is 4.2 mm. If the height of each conical part is 2.8 mm and the length of the entire pencil is 105.6 mm, find the total surface area of the pencil.
Solve the following pair of equations algebraically: \[ \begin{aligned} 101x + 102y &= 304 \\ 102x + 101y &= 305 \end{aligned} \]
If a line drawn parallel to one side of a triangle intersecting the other two sides in distinct points divides the two sides in the same ratio, then it is parallel to the third side. State and prove the converse of the above statement.