Given quadratic equation:
\[
\sqrt{3} x^2 + 10x + 7\sqrt{3} = 0
\]
Step 1: Identify coefficients
\[
a = \sqrt{3}, \quad b = 10, \quad c = 7\sqrt{3}
\]
Step 2: Write quadratic formula
\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
Step 3: Calculate discriminant
\[
D = b^2 - 4ac = 10^2 - 4 \times \sqrt{3} \times 7\sqrt{3} = 100 - 4 \times \sqrt{3} \times 7\sqrt{3}
\]
Note that \(\sqrt{3} \times \sqrt{3} = 3\), so
\[
D = 100 - 4 \times 7 \times 3 = 100 - 84 = 16
\]
Step 4: Calculate roots
\[
x = \frac{-10 \pm \sqrt{16}}{2 \times \sqrt{3}} = \frac{-10 \pm 4}{2 \sqrt{3}}
\]
Two roots:
\[
x_1 = \frac{-10 + 4}{2 \sqrt{3}} = \frac{-6}{2 \sqrt{3}} = \frac{-3}{\sqrt{3}} = -\sqrt{3}
\]
\[
x_2 = \frac{-10 - 4}{2 \sqrt{3}} = \frac{-14}{2 \sqrt{3}} = \frac{-7}{\sqrt{3}} = -\frac{7 \sqrt{3}}{3}
\]
Final Answer:
\[
x = -\sqrt{3} \quad \text{or} \quad x = -\frac{7 \sqrt{3}}{3}
\]