
Given Data:
| Marks | Number of Students (f) | Mid-point (x) | f × x |
|---|---|---|---|
| 0 – 5 | 2 | 2.5 | 5 |
| 5 – 10 | 3 | 7.5 | 22.5 |
| 10 – 15 | 8 | 12.5 | 100 |
| 15 – 20 | 15 | 17.5 | 262.5 |
| 20 – 25 | 14 | 22.5 | 315 |
| 25 – 30 | 8 | 27.5 | 220 |
Step 1: Calculate total frequency and total \(f \times x\)
\[ \sum f = 2 + 3 + 8 + 15 + 14 + 8 = 50 \] \[ \sum f x = 5 + 22.5 + 100 + 262.5 + 315 + 220 = 925 \]
Step 2: Calculate Mean
\[ \text{Mean} = \frac{\sum f x}{\sum f} = \frac{925}{50} = 18.5 \]
Step 3: Find Modal class
Modal class is the class interval with highest frequency.
Frequencies: 2, 3, 8, 15, 14, 8
Highest frequency = 15 (class 15 – 20)
So, modal class = 15 – 20
Step 4: Calculate Mode using formula for grouped data
\[ \text{Mode} = l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h \] Where:
\(l = 15\) (lower boundary of modal class)
\(f_1 = 15\) (frequency of modal class)
\(f_0 = 8\) (frequency of class before modal class)
\(f_2 = 14\) (frequency of class after modal class)
\(h = 5\) (class width)
Substitute values:
\[ \text{Mode} = 15 + \frac{15 - 8}{2 \times 15 - 8 - 14} \times 5 = 15 + \frac{7}{30 - 8 - 14} \times 5 = 15 + \frac{7}{8} \times 5 = 15 + 4.375 = 19.375 \]
Final Answer:
Mean marks = 18.5
Mode marks = 19.375
Let the Mean and Variance of five observations $ x_i $, $ i = 1, 2, 3, 4, 5 $ be 5 and 10 respectively. If three observations are $ x_1 = 1, x_2 = 3, x_3 = a $ and $ x_4 = 7, x_5 = b $ with $ a>b $, then the Variance of the observations $ n + x_n $ for $ n = 1, 2, 3, 4, 5 $ is
Find the variance of the following frequency distribution:
| Class Interval | ||||
| 0--4 | 4--8 | 8--12 | 12--16 | |
| Frequency | 1 | 2 | 2 | 1 |
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।